Some new observations on the t-equivalence relation

Mikołaj Krupski (Polish Academy of Sciences)

WINTER SCHOOL Hejnice, 2013

Mikołaj Krupski (Polish Academy of Sciences) Some new observations on the t-equivalence relation

For a completely regular space X, denote by $C_p(X)$ the space of continuous real-valued functions on X, with the pointwise convergence topology, i.e. $C_p(X) \subseteq \mathbb{R}^X$.

For a completely regular space X, denote by $C_p(X)$ the space of continuous real-valued functions on X, with the pointwise convergence topology, i.e. $C_p(X) \subseteq \mathbb{R}^X$. We say that spaces X and Y are *t*-equivalent, provided $C_p(X)$ and $C_p(Y)$ are homeomorphic.

伺い イヨン イヨン

For a completely regular space X, denote by $C_p(X)$ the space of continuous real-valued functions on X, with the pointwise convergence topology, i.e. $C_p(X) \subseteq \mathbb{R}^X$. We say that spaces X and Y are *t*-equivalent, provided $C_p(X)$ and $C_p(Y)$ are homeomorphic.

General Problem

Let \mathcal{P} be a topological property. Suppose, that X has \mathcal{P} and that X and Y are *t*-equivalent. Does Y has property \mathcal{P} ?

・ 同 ト ・ ヨ ト ・ ヨ ト …

For a completely regular space X, denote by $C_p(X)$ the space of continuous real-valued functions on X, with the pointwise convergence topology, i.e. $C_p(X) \subseteq \mathbb{R}^X$. We say that spaces X and Y are *t*-equivalent, provided $C_p(X)$ and $C_p(Y)$ are homeomorphic.

General Problem

Let \mathcal{P} be a topological property. Suppose, that X has \mathcal{P} and that X and Y are *t*-equivalent. Does Y has property \mathcal{P} ?

Examples

 If X and Y are t-equivalent and X is σ-compact, then Y is σ-compact

< ロ > < 同 > < 回 > < 回 >

For a completely regular space X, denote by $C_p(X)$ the space of continuous real-valued functions on X, with the pointwise convergence topology, i.e. $C_p(X) \subseteq \mathbb{R}^X$. We say that spaces X and Y are *t*-equivalent, provided $C_p(X)$ and $C_p(Y)$ are homeomorphic.

General Problem

Let \mathcal{P} be a topological property. Suppose, that X has \mathcal{P} and that X and Y are *t*-equivalent. Does Y has property \mathcal{P} ?

Examples

- If X and Y are t-equivalent and X is σ-compact, then Y is σ-compact
- **2** [0,1] and \mathbb{R} are *t*-equivalent so compactness is not preserved by *t*-equivalence.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ъ

Problem (Arkhangelskii)

Suppose X and Y are t-equivalent. Is it true that dim $X = \dim Y$?

Problem (Arkhangelskii)

Suppose X and Y are t-equivalent. Is it true that dim $X = \dim Y$?

The answer is affirmative under a stronger assumption: $C_p(X)$ and $C_p(Y)$ are **linearly** or **uniformly** homeomorphic.

Problem (Arkhangelskii)

Suppose X and Y are t-equivalent. Is it true that dim $X = \dim Y$?

The answer is affirmative under a stronger assumption: $C_p(X)$ and $C_p(Y)$ are **linearly** or **uniformly** homeomorphic. In particular, we do not know if the spaces $C_p(2^{\omega})$ and $C_p([0,1])$ or the spaces $C_p([0,1])$ and $C_p([0,1]^2)$ are homeomorphic.

通 と イ ヨ と イ ヨ と

A normal space X is called a *C*-space if for any sequence of its open covers $(\mathcal{U}_i)_{i\in\omega}$, there exists a sequence $(\mathcal{V}_i)_{i\in\omega}$ of families of pairwise disjoint open sets such that \mathcal{V}_i is a refinement of \mathcal{U}_i and $\bigcup_{i\in\omega} \mathcal{V}_i$ is a cover of X.

ヨッ イヨッ イヨッ

A normal space X is called a C-space if for any sequence of its open covers $(U_i)_{i \in \omega}$, there exists a sequence $(V_i)_{i \in \omega}$ of families of pairwise disjoint open sets such that V_i is a refinement of U_i and $\bigcup_{i \in \omega} V_i$ is a cover of X.

A normal space X is called weakly infinite-dimensional if for every sequence $(A_1, B_1), (A_2, B_2), \ldots$ of pairs of disjoint closed subsets of X there exists closed sets L_1, L_2, \ldots such that L_i is a partition between A_i and B_i and $\bigcap_i L_i = \emptyset$.

ヨッ イヨッ イヨッ

A normal space X is called a C-space if for any sequence of its open covers $(U_i)_{i \in \omega}$, there exists a sequence $(V_i)_{i \in \omega}$ of families of pairwise disjoint open sets such that V_i is a refinement of U_i and $\bigcup_{i \in \omega} V_i$ is a cover of X.

A normal space X is called weakly infinite-dimensional if for every sequence $(A_1, B_1), (A_2, B_2), \ldots$ of pairs of disjoint closed subsets of X there exists closed sets L_1, L_2, \ldots such that L_i is a partition between A_i and B_i and $\bigcap_i L_i = \emptyset$.

A space X is countable-dimensional if X can be represented as a countable union of finite-dimensional subspaces.

A normal space X is called a C-space if for any sequence of its open covers $(U_i)_{i \in \omega}$, there exists a sequence $(V_i)_{i \in \omega}$ of families of pairwise disjoint open sets such that V_i is a refinement of U_i and $\bigcup_{i \in \omega} V_i$ is a cover of X.

A normal space X is called weakly infinite-dimensional if for every sequence $(A_1, B_1), (A_2, B_2), \ldots$ of pairs of disjoint closed subsets of X there exists closed sets L_1, L_2, \ldots such that L_i is a partition between A_i and B_i and $\bigcap_i L_i = \emptyset$.

A space X is countable-dimensional if X can be represented as a countable union of finite-dimensional subspaces.

Fact

countable-dimensional metrizable \subseteq *C*-space \subseteq weakly infinite-dimensional

・ロト ・同ト ・ヨト ・ヨト

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

・吊 ・ ・ ヨ ト ・ ヨ ト ・ ヨ

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

In particular, the Hilbert cube is not t-equivalent to any finite-dimensional metrizable compactum.

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

In particular, the Hilbert cube is not t-equivalent to any finite-dimensional metrizable compactum.

Theorem (Marciszewski 2000)

Suppose that X and Y are t-equivalent metrizable spaces. Then X is countable dimensional if and only if Y is so.

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

In particular, the Hilbert cube is not t-equivalent to any finite-dimensional metrizable compactum.

Theorem (Marciszewski 2000)

Suppose that X and Y are t-equivalent metrizable spaces. Then X is countable dimensional if and only if Y is so.

Theorem (K.)

Let X and Y be σ -compact metrizable spaces. Suppose, that $C_{\rho}(Y)$ is an image of $C_{\rho}(X)$ under a continuous open mapping. If X is a C-space, then Y is also a C-space.

< ロ > < 同 > < 回 > < 回 >

Suppose that there is an open continuous surjection from $C_p(X)$ onto $C_p(Y)$. Then there are spaces Z_n , locally closed subspaces B_n of Z_n , and locally closed subspaces Y_n of Y, $n \in \mathbb{N}^+$, such that each Z_n admits a perfect finite-to-one mapping onto a closed subspace of X^n , Y_n is an image under a perfect mapping of B_n , and $Y = \bigcup \{Y_n : n \in \mathbb{N}^+\}$.

伺い イヨン イヨン

Suppose that there is an open continuous surjection from $C_p(X)$ onto $C_p(Y)$. Then there are spaces Z_n , locally closed subspaces B_n of Z_n , and locally closed subspaces Y_n of Y, $n \in \mathbb{N}^+$, such that each Z_n admits a perfect finite-to-one mapping onto a closed subspace of X^n , Y_n is an image under a perfect mapping of B_n , and $Y = \bigcup \{Y_n : n \in \mathbb{N}^+\}$.

Recall, that a space is called κ -discrete is it can be represented as a union of at most κ many discrete subspaces.

Suppose that there is an open continuous surjection from $C_p(X)$ onto $C_p(Y)$. Then there are spaces Z_n , locally closed subspaces B_n of Z_n , and locally closed subspaces Y_n of Y, $n \in \mathbb{N}^+$, such that each Z_n admits a perfect finite-to-one mapping onto a closed subspace of X^n , Y_n is an image under a perfect mapping of B_n , and $Y = \bigcup \{Y_n : n \in \mathbb{N}^+\}$.

Recall, that a space is called κ -discrete is it can be represented as a union of at most κ many discrete subspaces.

Corollary (Gruenhage, Okunev)

If there is an open continuous surjection from $C_p(X)$ onto $C_p(Y)$ and X is κ -discrete, then Y is κ -discrete.

・ロト ・同ト ・ヨト ・ヨト - ヨ

Suppose that there is an open continuous surjection from $C_p(X)$ onto $C_p(Y)$. Then there are spaces Z_n , locally closed subspaces B_n of Z_n , and locally closed subspaces Y_n of Y, $n \in \mathbb{N}^+$, such that each Z_n admits a perfect finite-to-one mapping onto a closed subspace of X^n , Y_n is an image under a perfect mapping of B_n , and $Y = \bigcup \{Y_n : n \in \mathbb{N}^+\}$.

Recall, that a space is called κ -discrete is it can be represented as a union of at most κ many discrete subspaces.

Corollary (Gruenhage, Okunev)

If there is an open continuous surjection from $C_p(X)$ onto $C_p(Y)$ and X is κ -discrete, then Y is κ -discrete.

Theorem (K.)

 Y_n is an image under a perfect finite-to-one mapping of B_n .

Mikołaj Krupski (Polish Academy of Sciences) Some new observations on the t-equivalence relation

Let X and Y be σ -compact metrizable spaces. Suppose, that $C_{\rho}(Y)$ is an image of $C_{\rho}(X)$ under a continuous open mapping. If X is a C-space, then Y is also a C-space.

Proof.

- * 同 * * ヨ * * ヨ * - ヨ

Let X and Y be σ -compact metrizable spaces. Suppose, that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If X is a C-space, then Y is also a C-space.

Proof.

• A finite product of compact metrizable *C*-spaces is a *C*-space. Also a countable union (with closed summands) of *C*-space is a *C*-space. It follows, that *Xⁿ* is a *C*-space.

Let X and Y be σ -compact metrizable spaces. Suppose, that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If X is a C-space, then Y is also a C-space.

Proof.

- A finite product of compact metrizable *C*-spaces is a *C*-space. Also a countable union (with closed summands) of *C*-space is a *C*-space. It follows, that *Xⁿ* is a *C*-space.
- F_{σ} subspace of a *C*-space is a *C*-space and preimage of a metrizable *C*-space under a continuous mappings with fibers being *C*-spaces is a *C*-space.

- 4 周 ト 4 戸 ト 4 戸 ト

Let X and Y be σ -compact metrizable spaces. Suppose, that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If X is a C-space, then Y is also a C-space.

Proof.

- A finite product of compact metrizable *C*-spaces is a *C*-space. Also a countable union (with closed summands) of *C*-space is a *C*-space. It follows, that *Xⁿ* is a *C*-space.
- F_σ subspace of a C-space is a C-space and preimage of a metrizable C-space under a continuous mappings with fibers being C-spaces is a C-space. Hence Z_n is a C-space and so is B_n (being an F_σ subspace)

- 4 回 ト 4 ヨ ト - 4 ヨ ト - -

Let X and Y be σ -compact metrizable spaces. Suppose, that $C_{\rho}(Y)$ is an image of $C_{\rho}(X)$ under a continuous open mapping. If X is a C-space, then Y is also a C-space.

Proof.

- A finite product of compact metrizable *C*-spaces is a *C*-space. Also a countable union (with closed summands) of *C*-space is a *C*-space. It follows, that *Xⁿ* is a *C*-space.
- F_σ subspace of a C-space is a C-space and preimage of a metrizable C-space under a continuous mappings with fibers being C-spaces is a C-space. Hence Z_n is a C-space and so is B_n (being an F_σ subspace)
- The set Z_n is σ-compact (as a perfect preimage of a σ-compact set) Since for compact spaces the property C is preserved by continuous mappings with fibers of cardinality < c we conclude that Y_n and thus Y is a C-space.

4 E 6 4 E 6

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

A normal space X is called a k-C-space, where $k \ge 2$, if for any sequence of its covers $(\mathcal{U}_i)_{i\in\omega}$, $|\mathcal{U}_i| \le k$, there exists a sequence $(\mathcal{V}_i)_{i\in\omega}$ of families of pairwise disjoint open sets such that for every $i \in \omega$ the family \mathcal{V}_i refines \mathcal{U}_i and $\bigcup_{i\in\omega} \mathcal{V}_i$ covers X.

く 戸 と く ヨ と く ヨ と

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

A normal space X is called a *k*-*C*-space, where $k \ge 2$, if for any sequence of its covers $(\mathcal{U}_i)_{i\in\omega}$, $|\mathcal{U}_i| \le k$, there exists a sequence $(\mathcal{V}_i)_{i\in\omega}$ of families of pairwise disjoint open sets such that for every $i \in \omega$ the family \mathcal{V}_i refines \mathcal{U}_i and $\bigcup_{i\in\omega} \mathcal{V}_i$ covers X. A space is weakly infinite-dimensional iff it is a 2-*C*-space

く 戸 と く ヨ と く ヨ と

Let X and Y be metrizable compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If for all $n \in \mathbb{N}^+$ the space X^n is weakly infinite-dimensional, then for all $n \in \mathbb{N}^+$ the finite power Y^n is also weakly infinite-dimensional.

A normal space X is called a k-C-space, where $k \ge 2$, if for any sequence of its covers $(\mathcal{U}_i)_{i\in\omega}$, $|\mathcal{U}_i| \le k$, there exists a sequence $(\mathcal{V}_i)_{i\in\omega}$ of families of pairwise disjoint open sets such that for every $i \in \omega$ the family \mathcal{V}_i refines \mathcal{U}_i and $\bigcup_{i\in\omega} \mathcal{V}_i$ covers X. A space is weakly infinite-dimensional iff it is a 2-C-space

Theorem (K.)

Let X and Y be metrizable σ -compact spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. Fix $k \ge 2$. If for all $n \in \mathbb{N}^+$ the space X^n is a k-C-space, then Y is also a k-C-space.

Theorem (Marciszewski 2000)

Suppose that X and Y are t-equivalent metrizable spaces. Then X is countable dimensional if and only if Y is so.

Theorem (Marciszewski 2000)

Suppose that X and Y are t-equivalent metrizable spaces. Then X is countable dimensional if and only if Y is so.

Theorem

Suppose that X and Y are metrizable spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If X is countable dimensional, then Y is so.

Theorem (Marciszewski 2000)

Suppose that X and Y are t-equivalent metrizable spaces. Then X is countable dimensional if and only if Y is so.

Theorem

Suppose that X and Y are metrizable spaces such that $C_p(Y)$ is an image of $C_p(X)$ under a continuous open mapping. If X is countable dimensional, then Y is so.

Question

Can we get rid of the metrizability assumption in the above theorems?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >